EB Secret, c0r0n4con (i/iii)

La gente de fwhibbit (Follow the White Rabbit) sigue publicando retos en el CTF de la c0r0n4con aún tras haber finalizado la conferencia. Ya comenté en su día que Mike’s Dungeon (Web) de @jorge_ctf me pareció una pequeña obra de arte. Hoy le toca el turno a otra joya, EB Secret (Misc), de @naivenom.

EB Secret entra en la categoría Misc, agrupando técnicas web y reversing

EB Secret comienza con un sencillo mensaje que abre la caja de Pandora.

«The new platform for premium video is vulnerable. Do you know the way to obtain the obsolete program and recover the secret key? DON`T RUN AS ROOT.
http://167.172.187.39:8004/»

El «Don’t run as root» ahora no lo terminamos de entender, pero tomará sentido dentro de poco… Así que nos adentramos en la madriguera del conejo, y nos encontramos con el primer pasadizo:

http://167.172.187.39:8004/secret?name=admin

admin como parámetro en la URL y admin reflejado en el contenido de la página. Mmmh…

http://167.172.187.39:8004/secret?name=trololo refleja el nombre trololo. http://167.172.187.39:8004/secret?name=`ls` refleja directamente, sin interpretar las comillas (¡hey! tenía que intentarlo). También podemos comprobar que hay limitación de tamaño en el parámetro, admite 30 caracteres. Si metemos un valor de 31, el contenido reflejado vuelve a tomar el valor admin: http://167.172.187.39:8004/secret?name=1234567890123456789012345678901

Probar, probar y probar… Costó demasiado que llegara la inspiración:

SSTI FTW!

http://167.172.187.39:8004/secret?name={{4*4}}

SSTI, Server-Side Template Injection. Bingo. Vamos a darle calor:

http://167.172.187.39:8004/secret?name={{config}}

El autor nos saluda con un Holi en las variables de entorno 🙂

Con 30 caracteres máximo no podemos hacer piruetas de (J)(N)inja, pero podemos intentar gatear:

http://167.172.187.39:8004/secret?name={{url_for.__globals__}}

¿Qué hemos aprendido? La current_app se llama ssti (lo que viene a confirmar, una vez más, el server-side template injection)

http://167.172.187.39:8004/secret?name={{self.__dict__}}

¿qué sacamos en claro? Hay un secret en base64 en la última línea:

echo "bm90X3ByZWQxY3RhYmxlX2Z1bmN0MTBu" |base64 -D
not_pred1ctable_funct10n

y una función con el mismo nombre: not_pred1ctable_funct10n ….

¿Qué ocurrirá si ejecutamos la función?

http://167.172.187.39:8004/secret?name={{not_pred1ctable_funct10n()}}

Jackpot!

Copiamos el contenido en un archivo s.64 y lo parseamos.

import base64

f=open("s.b64", "r")
contents =f.read()
splited = contents.split(',')

res = ''
for i in splited:
   res = res + i.strip().replace('\'','').replace('\\n','').replace('[','').replace(']','')


base64_img_bytes = res.encode('utf-8')
with open('decoded', 'wb') as file_to_save:
    decoded_image_data = base64.standard_b64decode(base64_img_bytes)
    file_to_save.write(decoded_image_data)

Veamos qué tenemos por aquí:

$ file decoded
decoded: ELF 64-bit LSB pie executable, x86-64, version 1 (SYSV), dynamically linked, interpreter /lib64/ld-linux-x86-64.so.2, for GNU/Linux 3.2.0, BuildID[sha1]=33e62720986f5c9ad3c036ef7ec5118f7e19fd09, not stripped

Yeah, ¿bajamos un nivel más en la madriguera del conejo? Esto se pone interesante…

#GeratuEtxean: HackIt! Level 3

Para terminar, un clásico.

Un ELF para arm64 con mensaje para w0pr / Ramandi incluido 🙂

Abrimos con Ghidra y vemos que hay una función encargada de pedirnos 16 caracteres y comprobar que forman una key correcta.

Toca generar el programa que revierta las comprobaciones… Pero antes habrá que arreglar ese monstruo de código del descompilador…

$ file cambridge_technology
cambridge_technology: ELF 64-bit LSB pie executable, ARM aarch64, version 1 (SYSV), dynamically linked, interpreter /lib/ld-linux-aarch64.so.1, for GNU/Linux 3.7.0, stripped

$ uname -a
Linux ip.ec2.internal 5.0.10-300.fc30.aarch64 #1 SMP Tue Apr 30 16:06:13 UTC 2019 aarch64 aarch64 aarch64 GNU/Linux

$ ./cambridge_technology
Password: 12312312313123131
FAIL!

w0pr (@abeaumont en concreto) fue el primer y único equipo que consiguió hacer ingeniería inversa de ese monstruo ¯\_(ツ)_/¯ Alfredo ha publicado el write-up, merece la pena leerlo (y replicarlo) con detalle.

#GeratuEtxean: HackIt! Level 2

Nuestros espias han localizado la flag de este nivel, pero… ¡Alguien ha destruido la caja de password! Afortunadamente, nos han proporcionado instrucciones para enviarla, pero no acabamos de entenderlas… ¿Nos ayudas?

— BEGIN TRANSMISSION —
PAYLOAD FOUND ON trololo@54.171.128.20:34342
ACCESS b3BlbnNzaC1rZXktdjEAAAAABG5vbmUAAAAEbm9uZQAAAAAAAAABAAAAMwAAAAtzc2gtZW QyNTUxOQAAACD48tA2UHkNwf1gjzFoefbSiiA3s0+FIYWYOlxHuwDAVAAAALhSf19rUn9f awAAAAtzc2gtZWQyNTUxOQAAACD48tA2UHkNwf1gjzFoefbSiiA3s0+FIYWYOlxHuwDAVA AAAECeukBbUT2Vlozfd98BRRvKGCFRc0mdvRhAItlDfp1U7vjy0DZQeQ3B/WCPMWh59tKK IDezT4UhhZg6XEe7AMBUAAAALnJvb3RAaXAtMTcyLTMxLTYtNjUuZXUtd2VzdC0xLmNvbX B1dGUuaW50ZXJuYWwBAgMEBQYH
IDENTIFY USING 20ce8a7cc776a39ad291d4648e3e39ae.hax
SEND FLAG AS TEXT
— END TRANSMISSION —

Si nos intentamos conectar por ssh trololo@54.171.128.20 -p 34342 vemos que el servidor responde, pidiendo clave pública. Descodificando el string de ACCESS de base64, vemos una referencia a una máquina remota (AWS) y esta keyword: openssh-key-v1nonenone3

Haciendo pruebas, detectamos que la clave sigue el algoritmo DSA (no RSA). La preparamos:

$ cat id_dsa
—–BEGIN OPENSSH PRIVATE KEY—–
b3BlbnNzaC1rZXktdjEAAAAABG5vbmUAAAAEbm9uZQAAAAAAAAABAAAAMwAAAAtzc2gtZW
QyNTUxOQAAACD48tA2UHkNwf1gjzFoefbSiiA3s0+FIYWYOlxHuwDAVAAAALhSf19rUn9f
awAAAAtzc2gtZWQyNTUxOQAAACD48tA2UHkNwf1gjzFoefbSiiA3s0+FIYWYOlxHuwDAVA
AAAECeukBbUT2Vlozfd98BRRvKGCFRc0mdvRhAItlDfp1U7vjy0DZQeQ3B/WCPMWh59tKK
IDezT4UhhZg6XEe7AMBUAAAALnJvb3RAaXAtMTcyLTMxLTYtNjUuZXUtd2VzdC0xLmNvbX
B1dGUuaW50ZXJuYWwBAgMEBQYH
—–END OPENSSH PRIVATE KEY—–

Y conectamos:

$ ssh -i id_dsa -p 34342 trololo@54.171.128.20
Last login: Sat Mar 28 14:34:31 2020 from xxxxxxx
-sh-4.2$

Es una shell restringida (ni ls, ni gaitas). Además, si intentas borrar algo, te añade un espacio en blanco… En fin… El autocompletamiento con tabulador funciona. Vemos que existen algunos directorios, entre ellos /bin. Añadimos /bin al PATH y disponemos de cat, dig, ls y nsupdate.

El comando dig nos da una pista…. recordemos también que no hemos usado esta parte del enunciado:

IDENTIFY USING 20ce8a7cc776a39ad291d4648e3e39ae.hax

Investigando un poco vemos que existe un proyecto con TLD .hax para DNS dinámicos. La otra pista «SEND FLAG AS TEXT » nos parece indicar que necesitamos crear un registro TXT con la Flag. ¿Pero dónde está la flag? Bueno, no había muchos directorios en la máquina restringida donde nos encontramos, así que rastreando carpetas nos encontramos con /var/tmp/secret,

-sh-4.2$ cat /var/tmp/secret
Is0latI0nFl4w3dNetW0rkz!

Pedimos un dig del TLD hax:

dig -t txt 20ce8a7cc776a39ad291d4648e3e39ae.hax

y vemos que vamos bien:

-sh-4.2$ dig -t txt 20ce8a7cc776a39ad291d4648e3e39ae.hax

; <<>> DiG 9.11.4-P2-RedHat-9.11.4-9.P2.amzn2.0.2 <<>> -t txt 20ce8a7cc776a39ad291d4648e3e39ae.hax
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 12895
;; flags: qr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 1, ADDITIONAL: 2

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 4096
;; QUESTION SECTION:
;20ce8a7cc776a39ad291d4648e3e39ae.hax. IN TXT

;; AUTHORITY SECTION:
hax. 60 IN NS ns1.hax.

;; ADDITIONAL SECTION:
ns1.hax. 60 IN A 127.0.0.1

;; Query time: 0 msec
;; SERVER: 172.31.6.65#53(172.31.6.65)
;; WHEN: Sat Mar 28 16:41:53 UTC 2020
;; MSG SIZE rcvd: 136

Nos queda hacer el nsupdate … pero antes, veamos quién resuelve los DNS en esta máquina:

-sh-4.2$ cat /etc/resolv.conf
nameserver 172.31.6.65

$ nsupdate

server 172.31.6.65

update add 20ce8a7cc776a39ad291d4648e3e39ae.hax. 300 TXT «Is0latI0nFl4w3dNetW0rkz!»

send

Y listo! Pulsamos en el botón que nos ha preparado la ORG en ese level y pasamos de nivel

#GeratuEtxean: HackIt! Level 1

Esta edición de la GipuzkoaEncounter ha sido un tanto extraña. Confinados en casa, hemos intentado llevarlo lo mejor posible. Aunque no es para nada lo mismo y todos preferimos la presencial, esta edición online no ha estado nada mal. Y para no perder las buenas costumbres, vayamos con el write-up.

¡Ayuda! ¡Nos han hackeado la cuenta de Discord! Parece que han hecho cosas raras. Hemos conseguido un log de lo que han hecho…

Nos pasan un fichero .har (un dump de una conexión HTTP). Aunque internamente es simplemente un enorme fichero JSON, lo mejor para visualizarlo de forma rápida es abrirlo directamente con el editor de Chrome DevTools, pestaña Network. Importamos el fichero HAR para echarle un vistazo y vemos lo siguiente.

Podemos ver puntos verdes en la línea del timeline, donde van varios POST

Seleccionando uno de esos puntos:

Mensajes POST hacia el servidor de Discord. Se ve que el usuario está tecleando contenido («0ur53»)

El problema es que no vale con recorrer esos mensajes de tipo POST. Hay una complicación: el autor del reto ha editado algunos trozos (mensajes con método HTTP PATCH) e incluso borrado otros (mensajes DELETE).

Solucionamos con un pequeño script en nodejs

HackIt 2019, level 3³

Creo que esta prueba nos llevó más del 50% del tiempo del HackIt de este año :-O , pero es el tipo de prueba que nos encanta: sabes lo que hay que hacer, pero es un camino tortuoso, doloroso y complejo. A por ello 🙂

El título de la prueba siempre lleva alguna pista a modo de juego de palabras. Ese cubo en forma de superíndice…

Analizamos el dump y vemos que se trata de un pcap. Lo abrimos con Wireshark y curioseamos un rato.

No puede faltar una prueba con Wireshark en un HackIt que se precie 🙂

Ese puerto tcp/25565 se nos hace conocido…

También se podía deducir que era una captura del protocolo de Minecraft mirando los strings. Aparece algo como «generic.movementSpeed?». Buscándolo en Google nos lleva a Minecraft, sin duda.

Yep, Minecraft. En el servidor 51.15.21.7. Aquí otra vez fuimos troleados por @imobilis… o tal vez se trataba de un easter-egg en la prueba 🙂 El caso es que ese servidor existe (!) y tiene un mundo en el que apareces encima de una torre de la que no es posible salir. Incluso tiene mensajes en algunos carteles (por supuesto los probamos todos, sin éxito), como el de la imagen (Mundo Survival Kots)

Anda que no estuvimos tiempo «jugando» en esta torre. Los mensajes son pistas falsas.

El dump tiene mensajes enviados del cliente (10.11.12.52) al servidor (51.15.21.7) y viceversa. El payload de los mensajes es (parecía!) claro y se puede extraer con tshark.

$ tshark -r dump -T fields -e data

1b0010408d2e07aeae7d91401400000000000040855ae9b632828401
12004a0000000059c86aa10000000000001ac9
0a0021000000028daf8dbd
0a000e000000028daf8dbd

Aquí nos las prometíamos muy felices, porque vimos que había analizadores del protocolo Minecraft para Wireshark, como este o este. Todo muy de color rosa… hasta que nos fijamos en la fecha del último commit: 2010. Qué bien… no nos valen para nada. Así que, nos remangamos, fuimos a por café, y nos pusimos a estudiar la especificación del protocolo Minecraft, que está escrito por alguien que parece que tomaba apuntes de una charla, más que una especificación bien redactada. Hay exactamente 0 ejemplos de las partes más engorrosas (VarInt, packets with compression, …) En fin, nuestro compañero Joserra, un Excel wizard, decidió que nuestros scripts eran una **** mierda y que lo iba a hacer en Excel ¯_(ツ)_/¯

Si tomamos el primer payload, 001b es el tamaño del paquete (27 bytes), 0x10 el packetID y 408d2e07aeae7d91401400000000000040855ae9b632828401 el payload del paquete. El 0x10 es el ID de un paquete de tipo «Player Position» (Bound to server indica que es el cliente el que le envía al servidor). El payload se divide en 4 campos: x (double), feet y (double), z (double), «on ground» (boolean). Todos los paquetes de posición (0x10, server bound) son impares, por lo que terminan en 1 (true, on ground). Nos interesa conocer x, y, z.

x= 408d 2e07 aeae 7d91
y = 4014 0000 0000 0000
z = 4085 5ae9 b632 8284

Para pasar de hex a double, invocamos una macro, hex2dbl

No es la primera vez que resolvemos una prueba con Excel 🙂

y obtenemos las posiciones x,y,z.

Finalmente, generamos un gráfico de dispersión y obtenemos la clave 🙂

@imobilis tuvo que pasarse horas para conseguir mover el jugador de Minecraft por el mapa hasta conseguir trazar el texto. Si nos fijamos siempre empieza de un punto, baja y vuelve a subir a ese punto para trazar la siguiente letra. Analizando el payload, la altura de esa zona superior es distinta a la altura de donde dibuja las letras. Probablemente. en el juego tenía una especie de escalón que le marcaba la zona «segura» (donde se podía desplazar hacia la derecha, para pintar la siguiente letra). ¡Menudo curro!

Atentos a las mayúsculas, minúsculas, 0 vs. O, 1 vs. I, etc… Fue la troleada final a una buena prueba 🙂

BLoCkD3f1nEdPrOt0coL

UPDATE: @navarparty (los primeros en lograr superar este reto) ha publicado su solución (en Go!). Thanks @tatai!
También recomiendo leer el write-up de w0pr y su elegante solución en Python + pygame.